Abstract

This paper proposes a novel parallel hybrid training approach to conceive an evolutionary robot. The proposed design aims to provide efficient behaviours to perform its tasks in a complex area such as walking toward a hidden destination. Embedded in robot brain, this training and evolution combination is typically accomplished by evolving considerable recurrent neural networks (RNNs) using an evolutionary strategy (ES). The effectiveness of this proposal is improved by employing CUDA technology that executes the evolutionary process of RNNs in a parallel way. The modifications applied are indicating to meet CUDA requirements in terms of CPU/GPU cooperation and memory management. Using a set of experiments performed by GPGPU-based physical simulator named open dynamics engine (ODE) and CUDA-based evolution, the effectiveness of the proposed parallel evolutionary training technique was validated for real movements of humanoid robots. This validation showed a promising speed-up, since this field requires very high powerful computational resources.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.