Abstract

Contraction-based skeleton extraction methods have the feature that during skeleton extraction process, the correspondence between skeleton and mesh regions can be obtained, which makes this class of algorithm attractive. Besides, among all mesh skeleton extraction methods, contraction-based methods possesses the merits of robustness to noise, rotation invariant and no requirement on additional boundary conditions. However, contraction-based methods still suffer some flaws such as not promising homotopy or centeredness, or not capable of processing non-closed meshes, etc. In this paper, an improved contraction-based skeleton extraction method is proposed which covers the failure of existing methods at non-closed part of a model and increases the rationality of the centeredness correction of the skeleton: First, non-closed models are virtually closed by a preprocessing stage such that models with boundaries can be contracted in the same way as the closed ones. Second, to improve the centeredness of the skeleton, we present a simpler and more effective one-ring area sequence weighting scheme by which the displacements measuring the shift of skeleton nodes can be calculated. Experimental results show the effectiveness of our work.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.