Abstract

An improved multi-objective genetic algorithm is proposed to solve constrained optimization problems. The constrained optimization problem is converted into a multi-objective optimization problem. In the evolution process, our algorithm is based on multi-objective technique, where the population is divided into dominated and non-dominated subpopulation. Arithmetic crossover operator is utilized for the randomly selected individuals from dominated and non-dominated subpopulation, respectively. The crossover operator can lead gradually the individuals to the extreme point and improve the local searching ability. Diversity mutation operator is introduced for non-dominated subpopulation. Through testing the performance of the proposed algorithm on 3 benchmark functions and 1 engineering optimization problems, and comparing with other meta-heuristics, the result of simulation shows that the proposed algorithm has great ability of global search. Keywords: multi-objective optimization;genetic algorithm;constrained optimization problem;engineering application

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.