Abstract

Global Navigation Satellite System (GNSS) ionospheric tomography is a typical ill-posed problem. Joint inversion with external observation data is one of the effective ways to mitigate the problem. In this article, by fusing 3-D multisource ionospheric data, and improving the stochastic model, an improved GNSS tomographic algorithm MFCIT [computerized ionospheric tomography (CIT) using mapping function] is presented. The accuracy of the algorithm is validated by selected data under different geomagnetic and solar conditions acquired in Europe. The results show that the estimated, statistically significant uncertainty for each of the layers is about 0.50–3.0TECU, with the largest absolute error within 6.0TECU. The advantage of the MFCIT is that it is based on the Kalman filter, which enables efficient near real-time 3-D monitoring of ionosphere. The temporal resolution can reach ~1 min level. Here, we apply the ionospheric tomography inversion to the magnetic storm on January 7, 2015, in the European region, and quantified the evolution of the storm. The results show that the difference of the core region between the MFCIT and CODE GIM is less than 1TECU. More importantly, during the initial phase of the storm, when the ionospheric disturbance is not evident in the single layer CODE GIM model, the MFCIT shows obvious positive disturbances in the upper ionosphere, although there is no disturbance in the F2 layer. The MFCIT further tracks the evolution of the magnetic storm that the ionospheric disturbance expands from the upper to the lower ionosphere layers, and at UT12:00, the disturbance continues to spread to the F2 layer.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call