Abstract
We propose a new algorithm to compute the topology of a real algebraic space curve. The novelties of this algorithm are a new technique to achieve the lifting step which recovers points of the space curve in each plane fiber from several projections and a weaker notion of generic position. As distinct to previous work, our sweep generic position does not require that x-critical points have different x-coordinates. The complexity of achieving this sweep generic position property is thus no longer a bottleneck in term of complexity. The bit complexity of our algorithm is O˜(d18+d17τ) where d and τ bound the degree and the bitsize of the integer coefficients, respectively, of the defining polynomials of the curve and polylogarithmic factors are ignored. To the best of our knowledge, this improves upon the best currently known results at least by a factor of d2.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.