Abstract
BackgroundPost-translational modification (PTM) of transcriptional factors and chromatin remodelling proteins is recognized as a major mechanism by which transcriptional regulation occurs. Chromatin immunoprecipitation (ChIP) in combination with high-throughput sequencing (ChIP-seq) is being applied as a gold standard when studying the genome-wide binding sites of transcription factor (TFs). This has greatly improved our understanding of protein-DNA interactions on a genomic-wide scale. However, current ChIP-seq peak calling tools are not sufficiently sensitive and are unable to simultaneously identify post-translational modified TFs based on ChIP-seq analysis; this is largely due to the wide-spread presence of multiple modified TFs. Using SUMO-1 modification as an example; we describe here an improved approach that allows the simultaneous identification of the particular genomic binding regions of all TFs with SUMO-1 modification.ResultsTraditional peak calling methods are inadequate when identifying multiple TF binding sites that involve long genomic regions and therefore we designed a ChIP-seq processing pipeline for the detection of peaks via a combinatorial fusion method. Then, we annotate the peaks with known transcription factor binding sites (TFBS) using the Transfac Matrix Database (v7.0), which predicts potential SUMOylated TFs. Next, the peak calling result was further analyzed based on the promoter proximity, TFBS annotation, a literature review, and was validated by ChIP-real-time quantitative PCR (qPCR) and ChIP-reChIP real-time qPCR. The results show clearly that SUMOylated TFs are able to be pinpointed using our pipeline.ConclusionA methodology is presented that analyzes SUMO-1 ChIP-seq patterns and predicts related TFs. Our analysis uses three peak calling tools. The fusion of these different tools increases the precision of the peak calling results. TFBS annotation method is able to predict potential SUMOylated TFs. Here, we offer a new approach that enhances ChIP-seq data analysis and allows the identification of multiple SUMOylated TF binding sites simultaneously, which can then be utilized for other functional PTM binding site prediction in future.
Highlights
SUMOylation was initially identified as a reversible posttranslational modification that controls a variety of cellular processes including replication, chromosome segregation, and DNA repair [1,2,3]
Consistent with previous finding showing that SUMO modification of ELK-1 is required for its repressive activity [30], reverse transcriptionqPCR (RT-quantitative PCR (qPCR)) analysis showed a higher induction of TARS2 and NDUFB7 during K-Rta induced KSHV reactivation after SUMO-1 knockdown in TREx-F3H3-K-Rta shSUMO-1 BCBL-1 cells comparing with its parental TREx-F3H3-K-Rta BCBL-1 cells (Figure 5B and 5C)
Taking SUMO modification as an example, we have developed a computational pipeline for predicting putative SUMOylated transcription factors (TFs) from a group of transcription factor binding sites (TFBS)
Summary
SUMOylation was initially identified as a reversible posttranslational modification that controls a variety of cellular processes including replication, chromosome segregation, and DNA repair [1,2,3]. The growing list of SUMO substrates includes various transcription factors (TFs) and chromatin remodeling molecules, which, upon SUMOylation, are often associated with transcriptional repression [4], and the maintenance of heterochromatin silencing [5,6]. Post-translational modification (PTM) of transcriptional factors and chromatin remodelling proteins is recognized as a major mechanism by which transcriptional regulation occurs. Chromatin immunoprecipitation (ChIP) in combination with high-throughput sequencing (ChIP-seq) is being applied as a gold standard when studying the genome-wide binding sites of transcription factor (TFs). This has greatly improved our understanding of protein-DNA interactions on a genomic-wide scale. Using SUMO-1 modification as an example; we describe here an improved approach that allows the simultaneous identification of the particular genomic binding regions of all TFs with SUMO-1 modification
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.