Abstract

To explore and evaluate the impacts of relative velocity fluctuation on the dynamic characteristics and fuel consumptions of traffic flow, we present an improved car-following model considering relative velocity fluctuation based on the full velocity difference model, then we carry out several numerical simulations to determine the optimal time window length and to explore how relative velocity fluctuation affects cars’ velocity and its fluctuation as well as fuel consumptions. It can be found that the improved car-following model can describe the phase transition of traffic flow and estimate the evolution of traffic congestion, and that taking relative velocity fluctuation into account in designing the advanced adaptive cruise control strategy can improve the traffic flow stability and reduce fuel consumptions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.