Abstract

The Concrete Damage Model that is implemented in the LS-Dyna code is capable of simulating the behavior of plain concrete under complex static and dynamic loading conditions. However, the values for the numerous parameters, which are required as an input, are left for the user to provide. In this study the Concrete Damage Model was calibrated for a wide range of strong concretes, using triaxial-compression-test data that were obtained from the literature. In contrast, the adjustment of the parameters of the present model is provided as a function of the unconfined compressive strength of the concrete. Although, not enough validation has been done either in higher pressures or in actual tests, it is evident that the presently calibrated model shows better agreement with published test results than the model currently available in LS-Dyna.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.