Abstract

This study proposes an improved Byzantine fault-tolerant consensus RB-BFT based on the reputation model to address the problems of low reliability of primary nodes and high communication complexity in the practical Byzantine algorithm (PBFT). First, this algorithm establishes a dynamic reputation model of nodes to distinguish honest and malicious nodes in the system, lowering the likelihood of malicious nodes being chosen as primary nodes and increasing the dependability of primary nodes. Second, the algorithm introduces supervisory nodes for information supervision while reducing the centrality of the system. Finally, this algorithm improves the consistency protocol of the PBFT algorithm by optimizing the process of mutual communication between nodes in the preparation and commitment phases, which reduces the algorithm communication complexity from O(n2) to O(n). Theoretical and practical studies reveal that the RB-BFT algorithm enhances performance and reliability greatly.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.