Abstract
Artificial neural network (ANN) which is an information processing technique developed by modeling the nervous system of the human brain is one of the most powerful learning methods today. One of the factors that make ANN successful is its training algorithm. In this paper, an improved butterfly optimization algorithm (IBOA) based on the butterfly optimization algorithm was proposed for training the feed-forward artificial neural networks. The IBOA algorithm has the chaotic property which helps optimization algorithms to explore the search space more dynamically and globally. In the experiments, ten chaotic maps were used. The success of the IBOA algorithm was tested on 13 benchmark functions which are well known to those working on global optimization and are frequently used for testing and analysis of optimization algorithms. The Tent-mapped IBOA algorithm outperformed the other algorithms in most of the benchmark functions. Moreover, the success of the IBOA-MLP algorithm also has been tested on five classification datasets (xor, balloon, iris, breast cancer, and heart) and the IBOA-MLP algorithm was compared with four algorithms in the literature. According to the statistical performance metrics (sensitivity, specificity, precision, F1-score, and Friedman test), the IBOA-MLP outperformed the other algorithms and proved to be successful in training the feed-forward artificial neural networks.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.