Abstract
BackgroundThe reconstruction of gene regulatory network (GRN) from gene expression data can discover regulatory relationships among genes and gain deep insights into the complicated regulation mechanism of life. However, it is still a great challenge in systems biology and bioinformatics. During the past years, numerous computational approaches have been developed for this goal, and Bayesian network (BN) methods draw most of attention among these methods because of its inherent probability characteristics. However, Bayesian network methods are time consuming and cannot handle large-scale networks due to their high computational complexity, while the mutual information-based methods are highly effective but directionless and have a high false-positive rate.ResultsTo solve these problems, we propose a Candidate Auto Selection algorithm (CAS) based on mutual information and breakpoint detection to restrict the search space in order to accelerate the learning process of Bayesian network. First, the proposed CAS algorithm automatically selects the neighbor candidates of each node before searching the best structure of GRN. Then based on CAS algorithm, we propose a globally optimal greedy search method (CAS + G), which focuses on finding the highest rated network structure, and a local learning method (CAS + L), which focuses on faster learning the structure with little loss of quality.ConclusionResults show that the proposed CAS algorithm can effectively reduce the search space of Bayesian networks through identifying the neighbor candidates of each node. In our experiments, the CAS + G method outperforms the state-of-the-art method on simulation data for inferring GRNs, and the CAS + L method is significantly faster than the state-of-the-art method with little loss of accuracy. Hence, the CAS based methods effectively decrease the computational complexity of Bayesian network and are more suitable for GRN inference.
Highlights
The reconstruction of gene regulatory network (GRN) from gene expression data can discover regulatory relationships among genes and gain deep insights into the complicated regulation mechanism of life
This section consists of three parts: a) Candidate auto selection algorithm based on mutual information and breakpoint detection. b) Local learning algorithm (CAS + L) for reconstruction of the GRN. c) Globally-optimal greedy algorithm (CAS + G) for reconstruction of GRN
Candidate auto selection (CAS) algorithm based on mutual information and breakpoint detection Usually, MI is used as a metric of the correlation between two variables
Summary
The reconstruction of gene regulatory network (GRN) from gene expression data can discover regulatory relationships among genes and gain deep insights into the complicated regulation mechanism of life. It is still a great challenge in systems biology and bioinformatics. Life activities are regulated through complex interconnections of genes and their products [1] These interactions between genes form so-called gene regulatory networks (GRNs) in living cells. Inferring Gene regulatory networks (GRNs), known as reverse engineering, is a critical problem in computational biology [2,3,4].
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.