Abstract
This study presents a novel method for reducing the switching losses of an asymmetric half-bridge converter for a three-phase, 12/8 switched reluctance motor operated in low speed. In particular, this study aims to reduce the switching-off losses of chopping switches in the converter when operated in the current regulated mode (chopping mode). The proposed method uses the mixed parallel operation of IGBT (chopping switch) and MOSFET (auxiliary switch). MOSFET is precisely controlled to momentarily conduct prior to the turn-off interval of the IGBT. Consequently, the voltage across the switches is clamped to approximately zero, substantially decreasing the turn-off switching losses. The analytical expressions of power losses are extensively elaborated. Compared with the conventional asymmetric half-bridge converter, the modified converter can effectively minimize the switching losses. Therefore, the efficiency of the converter is eventually improved. Computer simulation and experimental results confirm the effectiveness of the proposed technique.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.