Abstract
The aspect-category sentiment analysis can provide more and deeper information than the document-level sentiment analysis, because it aims to predict the sentiment polarities of different aspect categories in the same text. The main challenge of aspect-category sentiment analysis is that different aspect categories may present different polarities in the same text. Previous studies combine the Long Short-Term Memory (LSTM) and attention mechanism to predict the sentiment polarity of the given aspect category, but the LSTM-based methods are not really bidirectional text feature extraction methods. In this paper, we propose a multi-task aspect-category sentiment analysis model based on RoBERTa (Robustly Optimized BERT Pre-training Approach). Treating each aspect category as a subtask, we employ the RoBERTa based on deep bidirectional Transformer to extract features from both text and aspect tokens, and apply the cross-attention mechanism to guide the model to focus on the features most relevant to the given aspect category. According to the experimental results, the proposed model outperforms other models for comparison in aspect-category sentiment analysis. Furthermore, the influencing factors of our proposed model are also analyzed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.