Abstract

This paper proposes an improved artificial bee colony (IABC) algorithm for addressing the distributed flow shop considering the distance coefficient found in precast concrete production system, with the minimisation of the makespan. In the proposed algorithm, each solution is first represented by a two-dimensional vector, where the first dimensional vector is the factory and the second dimensional vector lists the operation scheduling sequence of each factory. Second, considering the distributed problem feature, a distributed iterated greedy heuristic (DIG) is developed where destruction and construction processes are designed in detail while considering the distributed structures. Third, an efficient population initialisation method that considers the factory workload balance is presented. Then, a local search approach that randomly replaces two factories with two randomly selected jobs and that finds an optimal position for the two inserted operations via the DIG method is proposed. For the canonical ABC algorithm, using the DIG approach, the main three parts are improved, namely, the employee, onlooker, and scout bees. Finally, the proposed algorithm is tested on sets of extended instances based on the well-known benchmarks. Through an analysis of the experimental results, the highly effective proposed IABC algorithm is compared to several efficient algorithms drawn from the literature.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.