Abstract

BackgroundMultiple noncephalic electrical sources superpose with brain signals in the recorded EEG. Blind source separation (BSS) methods such as independent component analysis (ICA) have been shown to separate noncephalic artifacts as unique components. However, robust and objective identification of artifact components remains a challenge in practice. In addition, with high dimensional data, ICA requires a large number of observations for stable solutions. Moreover, using signals from long recordings to provide the large observation set might violate the stationarity assumption of ICA due to signal changes over time. New methodInstead of decomposing all channels simultaneously, subsets of channels are randomly selected and decomposed with ICA. With reduced dimensionality of the subsets, much less amount of data is required to derive stable components. To characterize each independent component, an artifact relevance index (ARI) is calculated by template matching each component with a model of the artifact. Automatic artifact identification is then implemented based on the statistical distribution of ARI of the numerous components generated. ResultsThe proposed permutation resampling for identification matching (PRIM) method effectively removed eye blink artifacts from both simulated and real EEG. Comparison with existing methodThe average topomap correlation coefficient between the cleaned EEG and the ground truth is 0.89±0.01 for PRIM, compared with 0.64±0.05 for conventional ICA based method. The average relative root-mean-square error is 0.40±0.01 for PRIM, compared with 0.66±0.10 for conventional method. ConclusionsThe proposed method overcame limitations of conventional ICA based method and succeeded in removing eye blink artifacts automatically.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.