Abstract

The Aquila Optimizer (AO) algorithm is a meta-heuristic algorithm with excellent performance, although it may be insufficient or tend to fall into local optima as as the complexity of real-world optimization problems increases. To overcome the shortcomings of AO, we propose an improved Aquila Optimizer algorithm (IAO) which improves the original AO algorithm via three strategies. First, in order to improve the optimization process, we introduce a search control factor (SCF) in which the absolute value decreasing as the iteration progresses, improving the hunting strategies of AO. Second, the random opposition-based learning (ROBL) strategy is added to enhance the algorithm’s exploitation ability. Finally, the Gaussian mutation (GM) strategy is applied to improve the exploration phase. To evaluate the optimization performance, the IAO was estimated on 23 benchmark and CEC2019 test functions. Finally, four real-world engineering problems were used. From the experimental results in comparison with AO and well-known algorithms, the superiority of our proposed IAO is validated.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.