Abstract

Attribute reduction problem (ARP) in rough set theory (RST) is an NP-hard one, which is difficult to be solved via traditionally analytical methods. In this paper, we propose an improved approach to ARP based on ant colony optimization (ACO) algorithm, named the improved ant colony optimization (IACO). In IACO, a new state transition probability formula and a new pheromone traps updating formula are developed in view of the differences between a traveling salesman problem and ARP. The experimental results demonstrate that IACO outperforms classical ACO as well as particle swarm optimization used for attribute reduction.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.