Abstract

During the last years, kriging has become one of the most popular methods in computer simulation and machine learning. Kriging models have been successfully used in many engineering applications, to approximate expensive simulation models. When many input variables are used, kriging is inefficient mainly due to an exorbitant computational time required during its construction. To handle high-dimensional problems (100+), one method is recently proposed that combines kriging with the Partial Least Squares technique, the so-called KPLS model. This method has shown interesting results in terms of saving CPU time required to build model while maintaining sufficient accuracy, on both academic and industrial problems. However, KPLS has provided a poor accuracy compared to conventional kriging on multimodal functions. To handle this issue, this paper proposes adding a new step during the construction of KPLS to improve its accuracy for multimodal functions. When the exponential covariance functions are used, this step is based on simple identification between the covariance function of KPLS and kriging. The developed method is validated especially by using a multimodal academic function, known as Griewank function in the literature, and we show the gain in terms of accuracy and computer time by comparing with KPLS and kriging.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.