Abstract

Models for simple closed-form analytical solutions for accurately predicting static deflections of circular thin-film piezoelectric microactuators are very useful in design and optimization of a variety of MEMS sensors and actuators utilizing piezoelectric actuators. While closed-form solutions treating actuators with simple geometries such as cantilevers and beams are available, simple analytical models treating circular bending-type actuators commonly used in MEMS applications are generally lacking. This paper presents a closed-form analytical solution for accurately estimating the deflections and the volume displacements of a circular multi-layer piezoelectric actuator under combined voltage and pressure loading. The model for the analytical solution presented in this paper, which is based on classical laminated plate theory, allows for inclusion of multiple layers and non-uniform diameters of various layers in the actuator including bonding and electrode layers, unlike other models previously reported in the literature. The analytical solution presented is validated experimentally as well as through a finite element solution and excellent experiment-model correlation within 1% variation is demonstrated. General guidelines for optimization of circular piezoelectric actuator are also discussed. The utility of the model for design optimization of a multi-layered piezoelectric actuator is demonstrated through a numerical example wherein the dimensions of a test actuator are optimized to improve the displaced volume by three-fold under combined voltage and resisting pressure loads.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call