Abstract

Abstract Matrix completion is widely used in information science fields such as machine learning and image processing. The alternating direction method of multipliers (ADMM), due to its ability to utilize the separable structure of the objective function, has become an extremely popular approach for solving this problem. But its subproblems can be computationally demanding. In order to improve computational e ciency, for large scale matrix completion problems, this paper proposes an improved ADMM by using convex combination technique. Under certain assumptions, the global convergence of the new algorithm is proved. Finally, we demonstrate the performance of the proposed algorithms via numerical experiments.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.