Abstract

This research mainly studies the semi-supervised learning algorithm of different domain data in machine olfaction, also known as sensor drift compensation algorithm. Usually for this kind of problem, it is difficult to obtain better recognition results by directly using the semi-supervised learning algorithm. For this reason, we propose a domain transformation semi-supervised weighted kernel extreme learning machine (DTSWKELM) algorithm, which converts the data through the domain and uses SWKELM algorithmic classification to transform the semi-supervised classification problem of different domain data into a semi-supervised classification problem of the same domain data.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.