Abstract
The heaters-based thermal-compensated adaptive adjustment of a reflection mirror at Shanghai high repetition rate X-ray Free-Electron Laser and extreme light facility (SHINE) is presented here based on finite element analysis. The correction performance of different control algorithms [singular value decomposition and gradient descent (GD)] is analyzed and compared. This study has demonstrated that a significant control algorithm can further improve the surface shape accuracy of the mirror. After optimizing the mirror control algorithm, the calculated slope errors and height errors of the mirror are reduced to nearly less than 50 nrad rms and 0.5 nm rms, respectively. The optimization result indicates that the GD control algorithm based on the Hessian matrix exhibits superior performance and practicality compared to the control algorithm before optimization.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.