Abstract

Condition-Based Approach studies restrictions on the inputs of a distributed problem, called conditions, to circumvent several impossibility results. Especially, for the synchronous consensus problem, the relation between conditions and time complexity bounds has been studied. In our previous work [12], we introduced the adaptiveness on time complexity of the condition-based approach, and established the adaptive condition-based approach: It classifies all possible input vectors into the hierarchical sequence of conditions according to their difficulty called legality level. For such hierarchy, adaptive algorithms achieve time complexity depending on the legality level of input vectors. In this paper, we propose an improved version of the adaptive condition-based algorithms for synchronous consensus that achieves better time complexity than the previous one. On the assumption that majority of processes are correct, the proposed algorithm terminates within min{f+2, t+1} rounds if l f.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.