Abstract

The African Vulture Optimization Algorithm (AVOA) is inspired by African vultures’ feeding and orienting behaviors. It comprises powerful operators while maintaining the balance of exploration and efficiency in solving optimization problems. To be used in discrete applications, this algorithm needs to be discretized. This paper introduces two versions based on the S-shaped and V-shaped transfer functions of AVOA and BAOVAH. Moreover, the increase in computational complexity is avoided. Disruption operator and Bitwise strategy have also been used to maximize this model’s performance. A multi-strategy version of the AVOA called BAVOA-v1 is presented. In the proposed approach, i.e., BAVOA-v1, different strategies such as IPRS, mutation neighborhood search strategy (MNSS) (balance between exploration and exploitation), multi-parent crossover (increasing exploitation), and Bitwise (increasing diversity and exploration) are used to provide solutions with greater variety and to assure the quality of solutions. The proposed methods are evaluated on 30 UCI datasets with different dimensions. The simulation results showed that the proposed BAOVAH algorithm performed better than other binary meta-heuristic algorithms. So that the proposed BAOVAH algorithm set is the most accurate in 67% of the data set, and 93% of the data set is the best value of the fitness functions. In terms of feature selection, it has shown high performance. Finally, the proposed method in a case study to determine the number of neurons and the activator function to improve deep learning results was used in the sentiment analysis of movie viewers. In this paper, the CNNEM model is designed. The results of experiments on three datasets of sentiment analysis—IMDB, Amazon, and Yelp—show that the BAOVAH algorithm increases the accuracy of the CNNEM network in the IMDB dataset by 6%, the Amazon dataset by 33%, and the Yelp dataset by 30%.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.