Abstract

Drought has negative impacts on water resources, food security, soil degradation, desertification and agricultural productivity. The meteorological and hydrological droughts prediction using standardized precipitation/runoff indices (SPI/SRI) is crucial for effective water resource management. In this study, we suggest ANFISWCA, an adaptive neuro-fuzzy inference system (ANFIS) optimized by the water cycle algorithm (WCA), for hydrological drought forecasting in semi-arid regions of Algeria. The new model was used to predict SRI at 3-, 6-, 9-, and 12-month accumulation periods in the Wadi Mina basin, Algeria. The results of the model were assessed using four criteria; determination coefficient, mean absolute error, variance accounted for, and root mean square error, and compared with those of the standalone ANFIS model. The findings suggested that throughout the testing phase at all the sub-basins, the proposed hybrid model outperformed the conventional model for estimating drought. This study indicated that the WCA algorithm enhanced the ANFIS model's drought forecasting accuracy. The proposed model could be employed for forecasting drought at multi-timescales, deciding on remedial strategies for dealing with drought at study stations, and aiding in sustainable water resources management.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call