Abstract

AbstractThe performance of perovskite solar cells has been continuously improving. However, humidity stability has become a key problem that hinders its promotion in the process of commercialization. A buffer layer deposited by atomic layer deposition is a very helpful method to solve this problem. In this work, MgO film is deposited between Spiro‐OMeTAD and electrode by low‐temperature atomic layer deposition at 80 °C, which resists the erosion of water vapor, inhibits the migration of electrode metal ions and the decomposition products of perovskite, then finally improves the stability of the device. At the same time, the MgO buffer layer can passivate the defects of porous Spiro, thus enhancing carrier transport efficiency and device performance. The Cs0.05(FAPbI3)0.85(MAPbBr3)0.15 perovskite device with a MgO buffer layer has displayed PCE of 22.74%, also with a high Voc of 1.223 V which is an excellent performance in devices with same perovskite component. Moreover, the device with a MgO buffer layer can maintain 80% of the initial efficiency after 7200 h of storage at 35% relative humidity under room temperature. This is a major achievement for humidity stability in the world, providing more ideas for further improving the stability of perovskite devices.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.