Abstract

In several decision-making problems, alternatives should be ranked on the basis of paired comparisons between them. We present an axiomatic approach for the universal ranking problem with arbitrary preference intensities, incomplete and multiple comparisons. In particular, two basic properties -- independence of irrelevant matches and self-consistency -- are considered. It is revealed that there exists no ranking method satisfying both requirements at the same time. The impossibility result holds under various restrictions on the set of ranking problems, however, it does not emerge in the case of round-robin tournaments. An interesting and more general possibility result is obtained by restricting the domain of independence of irrelevant matches through the concept of macrovertex.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.