Abstract

Immunity to Toxoplasma gondii at early stages of infection in C57BL/6 mice depends on gamma interferon (IFN-γ) production by NK cells, while at later stages it is primarily mediated by CD8 T cells. We decided to explore the requirement for CD4 T cells during T. gondii infection in Batf3-/- mice, which lack CD8α+ dendritic cells (DCs) that are necessary for cross-presentation of cell-associated antigens to CD8 T cells. We show that in this immunodeficient background on a BALB/c background, CD4 T cells become important effector cells and are able to protect Batf3-/- mice from infection with the avirulent strain RHΔku80Δrop5 Independently of the initial NK cell activation, CD4 T cells in wild-type and Batf3-/- mice were the major source of IFN-γ. Importantly, memory CD4 T cells were sufficient to provide protective immunity following transfer into Batf3-/- mice and secondary challenge with the virulent RHΔku80 strain. Collectively, these results show that under situations where CD8 cell responses are impaired, CD4 T cells provide an important alternative immune response to T. gondiiIMPORTANCEToxoplasma gondii is a widespread parasite of animals that causes zoonotic infections in humans. Although healthy individuals generally control the infection with only moderate symptoms, it causes serious illness in newborns and those with compromised immune systems such as HIV-infected AIDS patients. Because rodents are natural hosts for T. gondii, laboratory mice provide an excellent model for studying immune responses. Here, we used a combination of an attenuated mutant strain of the parasite that effectively vaccinates mice, with a defect in a transcriptional factor that impairs a critical subset of dendritic cells, to studying the immune response to infection. The findings reveal that in BALB/c mice, CD4 memory T cells play a dominant role in producing IFN-γ needed to control chronic infection. Hence, BALB/c mice may provide a more appropriate model for declining immunity seen in HIV-AIDS patients where loss of CD4 cells is associated with emergence of opportunistic infections.

Highlights

  • Immunity to Toxoplasma gondii at early stages of infection in C57BL/6 mice depends on gamma interferon (IFN-␥) production by NK cells, while at later stages it is primarily mediated by CD8 T cells

  • Since Batf3Ϫ/Ϫ mice are highly susceptible to the type II Prugniaud (Pru) strain of T. gondii [11], which has intermediate virulence, we tested infection with the highly attenuated RHΔku80Δrop5 mutant [21, 22], which lacks the key virulence factor ROP5, a polymorphic serine threonine (S/T) protein kinase secreted from rhoptries (ROP) of T. gondii

  • In wild-type mice, the initial recognition of T. gondii by TLR11 and TLR12 expressed by CD8␣ϩ cDCs triggers early IL-12 production and NK cell-mediated secretion of IFN-␥ leading to control parasite infection [4, 6, 39]

Read more

Summary

Introduction

Immunity to Toxoplasma gondii at early stages of infection in C57BL/6 mice depends on gamma interferon (IFN-␥) production by NK cells, while at later stages it is primarily mediated by CD8 T cells. Memory CD4 T cells were sufficient to provide protective immunity following transfer into Batf3Ϫ/Ϫ mice and secondary challenge with the virulent RHΔku strain. These results show that under situations where CD8 cell responses are impaired, CD4 T cells provide an important alternative immune response to T. gondii. CD4 T cells do play an important role during the priming phase of infection in C3H/HeN mice as their depletion during vaccination with avirulent strains of T. gondii prevents development of protective CD8 T cell immunity [31]. CD4 T cells are an important alternative source of IFN-␥ in C57BL/6 mice lacking both CD8 T cells and NK cells [34]

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call