Abstract
With density function theory BLYP/DNP method, together with homodesmotic reactions and isodesmic reactions, we calculated the resonance energies of some explosives, including eight nitro compounds which contains benzene rings, three nitro compounds which contains azaheterocycles (2,4-dinitroimidazole (2,4-DNI), 2,6-diamino-3,5-dinitropyrazine-1-oxide (LLM-105) and 2,4,6-trinitro-1,3,5-triazine) and one nitrogen-rich energetic compound of 3,3'-azobis(6-amino-s-tetrazine) (DAAT). The results indicate that their resonance energies are in relation to their shock sensitivity which measuring their threshold pressures of initiation, that is, the lower the resonance energy is, the higher the shock sensitivity of the explosive behaves. And this measuring method according to resonance energy is based on the global property of the molecule instead of the local one, such as one nitro group in the molecule. It is meaningful to calculate resonance energies of these kind of compounds quickly and accurately because resonance structures exist widely in these organic compounds and resonance energies may play a significant role in determining their shock sensitivity, and it is helpful in the rational design or synthesis of high energy and insensitive materials.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.