Abstract

One of the methods for solving a free or moving boundary problem is the use of Picard solvers which solve the geometry and the velocity field successively. When, however, the kinematic condition is used for updating the geometry in this technique, numerical stability problems occur for surface-tension-dominated flow. These problems are shown here to originate from the unstable integration of the local smoothing of the surface by surface tension. By an extension of the surface tension contribution to the flow field an implicit treatment of surface tension is obtained which overcomes these stability problems. The algorithm is applicable to both free and moving boundary problems, as will be shown by examples in this paper.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.