Abstract

SUMMARYIn this paper, the state convergence problem for closed quantum systems is investigated. We consider two degenerate cases, where the internal Hamiltonian of the system is not strongly regular or the linearized system around the target state is not controllable. Both the cases are closely related to practical systems such as one‐dimensional oscillators and coupled two spin systems. An implicit Lyapunov‐based control strategy is adopted for the convergence analysis. In particular, two kinds of Lyapunov functions are defined by implicit functions and their existences are guaranteed by a fixed point theorem. The convergence analysis is investigated by the LaSalle invariance principle for both cases. Moreover, the two Lyapunov functions are unified in a general form, and the characterization of the largest invariant set is presented. Finally, simulation studies are included to show the effectiveness and advantage of the proposed methods. Copyright © 2011 John Wiley & Sons, Ltd.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.