Abstract

We present an implicit immersed boundary method for the incompressible Navier–Stokes equations capable of handling three-dimensional membrane–fluid flow interactions. The goal of our approach is to greatly improve the time step by using the Jacobian-free Newton–Krylov method (JFNK) to advance the location of the elastic membrane implicitly. The most attractive feature of this Jacobian-free approach is Newton-like nonlinear convergence without the cost of forming and storing the true Jacobian. The Generalized Minimal Residual method (GMRES), which is a widely used Krylov-subspace iterative method, is used to update the search direction required for each Newton iteration. Each GMRES iteration only requires the action of the Jacobian in the form of matrix–vector products and therefore avoids the need of forming and storing the Jacobian matrix explicitly. Once the location of the boundary is obtained, the elastic forces acting at the discrete nodes of the membrane are computed using a finite element model. We then use the immersed boundary method to calculate the hydrodynamic effects and fluid–structure interaction effects such as membrane deformation. The present scheme has been validated by several examples including an oscillatory membrane initially placed in a still fluid, capsule membranes in shear flows and large deformation of red blood cells subjected to stretching force.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.