Abstract

In this study, an implicit scheme for the gas-kinetic scheme (GKS) on the unstructured hybrid mesh is proposed. The Spalart–Allmaras (SA) one equation turbulence model is incorporated into the implicit gas-kinetic scheme (IGKS) to predict the effects of turbulence. The implicit macroscopic governing equations are constructed and solved by the matrix-free lower-upper symmetric-Gauss–Seidel (LU-SGS) method. To reduce the number of cells and computational cost, the hybrid mesh is applied. A modified non-manifold hybrid mesh data(NHMD) is used for both unstructured hybrid mesh and uniform grid. Numerical investigations are performed on different 2D laminar and turbulent flows. The convergence property and the computational efficiency of the present IGKS method are investigated. Much better performance is obtained compared with the standard explicit gas-kinetic scheme. Also, our numerical results are found to be in good agreement with experiment data and other numerical solutions, demonstrating the good applicability and high efficiency of the present IGKS for the simulations of laminar and turbulent flows.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.