Abstract
We present a method for solving the incompressible Navier–Stokes equations in irregular domains. These equations are discretized using finite difference method in a uniform Cartesian grid. Stationary rigid boundaries are embedded in the Cartesian grid and singular forces are applied at the rigid boundaries to impose the no-slip conditions. The singular forces are then distributed to the nearby Cartesian grid points using the immersed boundary method. In the present work, the singular forces are computed implicitly by solving a small system of equations at each time step. This system of equations is derived from a second order projection method. The main advantage of this method is that it imposes the no-slip boundary condition exactly and avoids the need for small time step to maintain stability. The ability of the method to simulate viscous flows in irregular domains is demonstrated by applying to 2-dimensional flows past a circular cylinder, multiple rigid obstacles and 3-dimensional flow past a sphere.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Computer Methods in Applied Mechanics and Engineering
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.