Abstract
An FFT-based algorithm is developed to simulate the propagation of elastic waves in heterogeneous d-dimensional rectangular shape domains. The method allows one to prescribe the displacement as a function of time in a subregion of the domain, emulating the application of Dirichlet boundary conditions on an outer face. Time discretization is performed using an unconditionally stable beta-Newmark approach. The implicit problem for obtaining the displacement at each time step is solved by transforming the equilibrium equations into Fourier space and solving the corresponding linear system with a preconditioned Krylov solver. The resulting method is validated against analytical solutions and compared with implicit and explicit finite element simulations and with an explicit FFT approach. The accuracy of the method is similar to or better than that of finite elements, and the numerical performance is clearly superior, allowing the use of much larger models. To illustrate the capabilities of the method, some numerical examples are presented, including the propagation of planar, circular, and spherical waves and the simulation of the propagation of a pulse in a polycrystalline medium.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Computer Methods in Applied Mechanics and Engineering
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.