Abstract

This paper deals with the numerical computation and analysis for a class of two-dimensional time–space fractional convection–diffusion equations. An implicit difference scheme is derived for solving this class of equations. It is proved under some suitable conditions that the derived difference scheme is stable and convergent. Moreover, the convergence orders of the scheme in time and space are also given. In order to accelerate the convergence rate, by combining the Kronecker product splitting (KPS) preconditioner with the generalized minimal residual (GMRES) method, a preconditioning strategy for implementing the difference scheme is introduced. Finally, several numerical examples are presented to illustrate the computational accuracy and efficiency of the methods.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.