Abstract
In this paper, an implicit difference scheme is proposed and analyzed for a class of nonlinear fourth-order equations with the multi-term Riemann–Liouvile (R–L) fractional integral kernels. For the nonlinear convection term, we handle implicitly and attain a system of nonlinear algebraic equations by using the Galerkin method based on piecewise linear test functions. The Riemann–Liouvile fractional integral terms are treated by convolution quadrature. In order to obtain a fully discrete method, the standard central difference approximation is used to discretize the spatial derivative. The stability and convergence are rigorously proved by the discrete energy method. In addition, the existence and uniqueness of numerical solutions for nonlinear systems are proved strictly. Additionally, we introduce and compare the Besse relaxation algorithm, the Newton iterative method, and the linearized iterative algorithm for solving the nonlinear systems. Numerical results confirm the theoretical analysis and show the effectiveness of the method.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.