Abstract

In an effort to establish the optimum conditions for depositing high-quality diamond films at high deposition rates using a plasma torch, modelling work has been focused on developing a realistic model for determining temperature, velocity and particle density distributions in the plasma jet. To enhance molecular decomposition, which favourably improves diamond synthesis, high-speed gas is passed through a supersonic anode nozzle. In the subsequent low-pressure chamber, the chemical reactions cannot follow the fast macroscopic translation, resulting in distributions of dissociated precursors that are far from chemical equilibrium. To simulate the finite rate chemistry, a generalized implicit multi-component algorithm is introduced and examined in the context of a two-dimensional computational model of a chemically reacting Ar- supersonic plasma jet. The scheme can be adapted to other plasma flows in which chemical non-equilibrium is encountered.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.