Abstract

Process checkpointing is a procedure which periodically saves the process states into stable storage. Most checkpointing facilities select hard disks for archiving. However, the disk seek time is limited by the speed of the read-write heads, thus checkpointing process into a local disk requires extensive disk bandwidth. In this paper, we propose an approach that exploits the memory on idle workstations as a faster storage for checkpointing. In our scheme, autonomous machines which submit jobs to the computation server offer their physical memory to the server for job checkpointing. Eight applications are used to measure the remote memory performance in four checkpointing policies. Experimental results show that remote memory reduces at least 34.5 per cent of the overhead for sequential checkpointing and 32.1 per cent for incremental checkpointing. Additionally, to checkpoint a running process into a remote memory requires only 60 per cent of the local disk checkpoint latency time. Copyright © 1999 John Wiley & Sons, Ltd.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.