Abstract
Automatic text classification is a prominent research topic in text mining. The text pre-processing is a major role in text classifier. The efficiency of pre-processing techniques is increasing the performance of text classifier. In this paper, we are implementing ECAS stemmer, Efficient Instance Selection and Pre-computed Kernel Support Vector Machine for text classification using recent research articles. We are using better pre-processing techniques such as ECAS stemmer to find root word, Efficient Instance Selection for dimensionality reduction of text data and Pre-computed Kernel Support Vector Machine for classification of selected instances. In this experiments were performed on 750 research articles with three classes such as engineering article, medical articles and educational articles. The EIS-SVM classifier provides better performance in real-time research articles classification.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.