Abstract
Surface wave dispersion analysis is widely used in geophysics to infer near-surface shear (S)-wave velocity profiles for a wide variety of applications. However, inversion of surface wave data is challenging for most local-search methods due to its high nonlinearity and to its multimodality. In this work, we proposed and implemented a new Rayleigh wave dispersion curve inversion scheme based on differential search algorithm (DSA), one of recently developed swarm intelligence-based algorithms. DSA is inspired from seasonal migration behavior of species of the living beings throughout the year for solving highly nonlinear, multivariable, and multimodal optimization problems.The proposed inverse procedure is applied to nonlinear inversion of fundamental-mode Rayleigh wave dispersion curves for near-surface S-wave velocity profiles. To evaluate calculation efficiency and stability of DSA, four noise-free and four noisy synthetic data sets are firstly inverted. Then, the performance of DSA is compared with that of genetic algorithms (GA) by two noise-free synthetic data sets. Finally, a real-world example from a waste disposal site in NE Italy is inverted to examine the applicability and robustness of the proposed approach on surface wave data. Furthermore, the performance of DSA is compared against that of GA by real data to further evaluate scores of the inverse procedure described here.Simulation results from both synthetic and actual field data demonstrate that differential search algorithm (DSA) applied to nonlinear inversion of surface wave data should be considered good not only in terms of the accuracy but also in terms of the convergence speed. The great advantages of DSA are that the algorithm is simple, robust and easy to implement. Also there are fewer control parameters to tune.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.