Abstract

Transmeningeal pharmacotherapy for cerebral cortical disorders requires drug delivery through the subdural/subarachnoid space, ideally with a feedback controlled mechanism. We have developed a device suitable for this function. The first novel component of the apparatus is a silicone rubber strip equipped with (a) fluid-exchange ports for both drug delivery and local cerebrospinal fluid (CSF) removal, and (b) EEG recording electrode contacts. This strip can be positioned between the dura and pia maters. The second novel component is an implantable dual minipump that directs fluid movement to and from the silicone strip and is accessible for refilling and emptying the drug and CSF reservoirs, respectively. This minipump is regulated by a battery-powered microcontroller integrating a bi-directional radiofrequency (RF) communication module. The entire apparatus was implanted in 5 macaque monkeys, with the subdural strip positioned over the frontal cortex and the minipump assembly secured to the cranium under a protective cap. The system was successfully tested for up to 8 months for (1) transmeningeal drug delivery using acetylcholine (ACh) and muscimol as test compounds, (2) RF-transmission of neocortical EEG data to assess the efficacy of drug delivery, and (3) local CSF removal for subsequent diagnostic analyses. The device can be used for (a) monitoring neocortical electrophysiology and neurochemistry in freely behaving nonhuman primates for more than 6 months, (b) determining the neurobiological impact of subdural/subarachnoid drug delivery interfaces, (c) obtaining novel neuropharmacological data on the effects of central nervous system (CNS) drugs, and (d) performing translational studies to develop subdural pharmacotherapy devices.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call