Abstract
Detection and classification of electroneurogram (ENG) signals in the peripheral nervous system can be achieved by velocity selective recording (VSR) using multi-electrode arrays. This paper describes an implantable VSR-based ENG recording system representing a significant development in the field since it is the first system of its type that can record naturally evoked ENG and be interfaced wirelessly using a low data rate transcutaneous link. The system consists of two CMOS ASICs one of which is placed close to the multi-electrode cuff array (MEC), whilst the other is mounted close to the wireless link. The digital ASIC provides the signal processing required to detect selectively ENG signals based on velocity. The design makes use of an original architecture that is suitable for implantation and reduces the required data rate for transmission to units placed outside the body. Complete measured electrical data from samples of the ASICs are presented that show that the system has the capability to record signals of amplitude as low as 0.5μV, which is adequate for the recording of naturally evoked ENG. In addition, measurements of electrically evoked ENG from the explanted sciatic nerves of Xenopus Laevis frogs are presented.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Medical & Biological Engineering & Computing
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.