Abstract
In this paper, we present an implantable device for intra-cerebral electroencephalography (icEEG) data acquisition and real-time epileptic seizure detection with simultaneous focal antiepileptic drug injection feedback. This implantable device includes a neural signal amplifier, an asynchronous seizure detector, a drug delivery system (DDS) including a micropump, and a hybrid subdural electrode (HSE). The asynchronous detection algorithm is based on data-dependent analysis and validated with Matlab tools. The detector and DDS have a power saving mode. The HSE contacts are made of Platinum (Pt) encapsulated with polydimethylsiloxane (PDMS). Given the heterogeneity of electrographic seizure signals and seizure suppression threshold, the implantable device provides tunable parameters facility through an external transmitter to adapt to each individual's neurophysiology prior to clinical deployment. The proposed detector and DDS were assembled in Ø 50 mm and Ø 30 mm circular printed circuit boards, respectively. The detector was validated using icEEG recordings of seven patients who had previously undergone an intracranial investigation for epilepsy surgery. The triggering of the DDS was tested and a predefined seizure suppression dose was delivered ~16 s after electrographical seizure onsets. The device's power consumption was reduced by 12% in active mode and 49% in power saving mode compared to similar seizure detection algorithms implemented with synchronous architecture.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IEEE Transactions on Neural Systems and Rehabilitation Engineering
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.