Abstract

Based on the extended geometric process, a repair replacement model of a degradation system is studied, in which the delayed repair time depends on the working time after the last repair. Replacement and repair thresholds describe when the system will be replaced and when the system can be repaired, respectively. Two kinds of replacement policies are studied. One policy is jointly determined by the moment of the Nth failure and the first hitting time of the working time after the last repair for the replacement threshold, and the system is replaced, whichever occurs first; the other is the special case of the first policy, and the system is replaced when the working time after the last repair first hits the replacement threshold. The exact expressions of the long-run average cost rate are obtained. The optimal policies exist and can be ascertained by numerical methods. Finally, numerical examples are presented to demonstrate the application of the results obtained in the paper.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call