Abstract

It is estimated that there are 400000 new cases of visceral leishmaniasis each year, with about 30,000 deaths. Therefore, detection of this pathogen and its species is highly vital for overall health of the community. In the present research, a DNA-based biosensor, namely genosensor, was introduced for detection of genomic DNA of Leishmania infantum. The genosensor was fabricated based on the transduction of cadmium sulfide nanosheets and recognition of a particular single stranded DNA sequence, and worked in label-, marker-, tag- and PCR-free manners. Impedimetric measurements were performed in a wide range of frequency (recording Nyquist diagrams) without applying external force (working at open circuit potential) upon hybridization of DNA targets with the cadmium sulfide nanosheets surface-immobilized probe. The genosensor detected the complementary DNA strand in a concentration range of 1.0 × 10−14 to 1.0 × 10−6 mol L−1 and a detection limit (DL) of 0.81 fmol L−1 (6.5 fg mL−1), and genomic DNA of Leishmania infantum in a concentration range of 5–50 ng μL−1 and a DL of 1.2 ng μL−1. The genosensor had a very good selectivity, fabrication reproducibility and stability, and was applicable for practical applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.