Abstract

This article presents the contact force control approach for a quad-rotor system to perform tasks of interacting with the environment. The hovering capability of the quad-rotor system allows the force in the altitude direction to be regulated by realizing the impedance function. To obtain the better force control performance, inherent and external disturbances to the quad-rotor system are suppressed by designing the acceleration-based disturbance observer (AbDOB). Force tracking impedance control is applied to regulate the contact force to the environment. Simulation studies of force tracking control for changing a light bulb on the ceiling are performed to evaluate the feasibility of the proposed force control task for a quad-rotor system.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call