Abstract

Abstract The hypoxia microenvironment post myocardial infarction (MI) critically disturbs cellular metabolism and inflammation response, leading to scarce bioenergy supplying, prolonged inflammatory phase and high risk of cardiac fibrosis during cardiac restoration. Herein, an injectable hydrogel is prepared by Schiff-base reaction between fructose-1,6-bisphosphate (FBP)-grafted carboxymethyl chitosan (CF) and oxidized dextran (OD), following by loading fucoidan-coated baicalin (BA)-encapsulated zein nanoparticles (BFZ NPs), in which immunoregulatory and metabolism improving functions are integrally included. The grafted FBP serves to enhance glycolysis and provide more bioenergy for cardiomyocytes survival under hypoxia microenvironment, and elevating cellular antioxidant capacity via pentose phosphate pathway. OD with intrinsic anti-inflammatory effect can induce M2 polarization of macrophages to accelerate inflammatory elimination. While facing the possibility of endothelial-to-mesenchymal transition (EndoMT) caused by excessive expressed TGF-β1 secreted from M2 macrophages, BFZ NPs can target endothelia cells and intracellularly release BA to regulate the level of fatty acid oxidation, resulting in retained endothelial features and decreased risk of cardiac fibrosis. After being injecting the hydrogel into rats’ infarcted cardiac, the 28 day-post surgical outcomes demonstrate its benign effects on restoring cardiac functions and attenuating adverse left ventricular remodeling. This study shows a promising measure for MI treatment with immunoregulating and metabolism regulation comprehensively.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.