Abstract

Clustering of the mast cell function-associated antigen by its specific monoclonal antibody (G63) inhibits the FcepsilonRI-mediated secretory response. The cytosolic tail of the mast cell function-associated antigen contains a SIYSTL stretch, a potential immunoreceptor tyrosine-based inhibition motif. To investigate the possible functional role of this sequence, as well as identify potential intracellular proteins that interact with it, peptides corresponding to residues 4-12 of the mast cell function-associated antigen's N-terminal cytoplasmic domain, containing the above motif, were synthesized and used in affinity chromatography of mast cell lysates. Both tyrosyl phosphorylated and thiophosphorylated mast cell function-associated antigen peptides bound the src homology domain 2 (SH2)-containing tyrosine phosphatases-1 (SHP-1), -2 (SHP-2) and inositol 5'-phosphatase (SHIP), though with different efficiencies. Neither the nonphosphorylated peptide nor its tyrosyl phosphorylated reversed sequence peptide bound any of these phosphatases. Point mutation analysis of mast cell function-associated antigen pITIM binding requirements demonstrated that for SHP-2 association the amino acid residue at position Y-2 is not restricted to the hydrophobic isoleucine or valine. Glycine and other amino acids with hydrophilic residues, such as serine and threonine, at this position also maintain this binding capacity, whereas alanine and acidic residues abolish it. In contrast, SHP-1 binding was maintained only when serine was substituted by valine, suggesting that the Y-2 position provides selectivity for peptide binding to SH2 domains of SHP-1 and SHP-2. These results were corroborated by surface plasmon resonance measurements of the interaction between tyrosyl phosphorylated mast cell function-associated antigen peptide and recombinant soluble SH2 domains of SHP-1, SHP-2 and SHIP, suggesting that the associations observed in the cell lysates may be direct. Taken together these results clearly indicate that the SIYSTL motif present in mast cell function-associated antigen's cytosolic tail exhibits characteristic features of an immunoreceptor tyrosine-based inhibition motif, suggesting it is a new member of the growing diverse family of immunoreceptor tyrosine-based inhibition motif-containing receptors.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call