Abstract
Current therapeutic protocols for diabetic foot ulcers (DFUs), a severe and rapidly growing chronic complication in diabetic patients, remain nonspecific. Hyperglycemia-caused inflammation and excessive reactive oxygen species (ROS) are common obstacles encountered in DFU wound healing, often leading to impaired recovery. These two effects reinforce each other, forming an endless loop. However, adequate and inclusive methods are still lacking to target these two aspects and break the vicious cycle. This study proposes a novel approach for treating DFU wounds, utilizing an immunomodulatory hydrogel to achieve self-cascade glucose depletion and ROS scavenging to regulate the diabetic microenvironment. Specifically, AuPt@melanin-incorporated (GHM3) hydrogel dressing is developed to facilitate efficient hyperthermia-enhanced local glucose depletion and ROS scavenging. Mechanistically, in vitro/vivo experiments and RNA sequencing analysis demonstrate that GHM3 disrupts the ROS-inflammation cascade cycle and downregulates the ratio of M1/M2 macrophages, consequently improving the therapeutic outcomes for dorsal skin and DFU wounds in diabetic rats. In conclusion, this proposed approach offers a facile, safe, and highly efficient treatment modality for DFUs.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.